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SUMMARY

Leontovich has proved that the triangular equilibrium
positions in the planar Restricted Problem of Three Bodies are
stable for almost all admissible mass ratios. It is shown here
that the set of exceptional mass ratios for which stability
remains to be proved or invalidated contains only one point

besides the critical mass ratios of order two and three.




1. INTRODUCTION

We consider a conservative dynamical system with two degrees of

freedom defined by the equations of motion

5 2 . EN,
3 = z = - == (i=1,2)
i azi+2 i+2 azi

with the Hamiltonian function 3 analytic at the origin in the four

dimensional phase space.

Let us suppose that the origin is a position of equilibrium for the
system. Thus, in the neighborhood of the origin, the Hamiltonian can be

expanded as a series

3f=23[n

n>2

of powers of z2q, Zys Zqs 2 the term SEn being the homogeneous

component of the series with degree n.

We assume that there exists a completely canonical linear mapping

(21’22’23’26) > (21,22,23,24) reducing 8!2 to the form

1 2,22 .1 2,2, 2
5!2 > wl(Zl+23) +2 w2(22+24)

where Wy and w, are real numbers. Thus the equilibrium is said to

be of the elliptic kind, and the numbers w, and w, Tepresent a set
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of basic frequencies for the linear dynamical system described by the

Hamiltonian function 3!2.

Given a fixed integer n such that n > 4, let us consider the
following hypothesis:
(An) ("Restricted Condition of Irrationality")--

klml + k2w2 $# 0

for all pairs (kl’k2) of rational integers such that

|k1| + |k,| < n.

Under the condition (An), there exists at least one canonical
transformation (21,22,23,24) > (gl,;z,;3,c4) which decomposes the

original Hamiltonian into the sum

= +
3 = H(5),8,:8458,) = 5 + p(nt1)

where 3 1s a polynomial in the variables

2 2 2 2
L=t +2y L=, *¢,

of the form

1y 2 2
N wlll + w212 + 2(A114-2B1112 + CIZ) +

and where !P(n+l) is a power series in Cl’ Cz, C3, C4 beginning with
terms of degree n + 1 and convergent in the neighborhood of the origin.

The coefficients in the polynomial ¥ do not depend on the

integer n nor on the manner by which the normalization transformation

(1)




is obtained. Thus, in particular, the determinant

D = det(a,,)

134,19

whose elements are defined as follows

2_.
- K
= TR (i,3=1,2),
1j <311an> T
ij
3
a,,=a,, =|— (i=1,2)
i3~ 31 <31> P 2600
i Ii_Ij 0
a33 = 0,

is an invariant of ti : Hamiltonian $f with respect to the canonical

transformations leading to the normal decomposition (1).

At last, let us still consider two more hypotheses:
(Aw) ("General Condition of Irrationality'")--For any pair (kl’kZ) of
rational integers, kyuw; + Kou, ¥ 0.
(B) The determinant D is not zero.

Arnol“d (1961) has established the following theorem. If the
conditions (Aw) and (B) are verified, then on each energy manifold
Jf = h in the neighborhood of the equilibrium, there exist invariant

tori of quasi-periodic motions which divide the manifold. In consequence,

the equilibrium is stable.

As an application of this theorem, Leontovich (1962) deduced that

the triangular equilibrium positions in the planar Restricted Problem of



Three Bodies are stable for all permissible mass ratios but a set of

measure zero.

However, Moser has shown that Arnol“d's theorem is still valid

under the weaker conditions (A4) and (E).

We propose here to apply this weaker form of the theorem to the
triangular positions of the planar Restricted Problem, in order to

determine the mass ratios for which there is stability.

2. FIRST ORDER

In the canonical units and with respect to the synodical
barycentric system of Cartesian coordinates, the planar Restricted

Problem of Three Bodies is described by the Lagrangian function

£=26245% + (xi-iy) + Q-+ 202 + ud 41,2,
2 pl 271 p2 2 72

For the sake of convenience, we put
Y=1-ZUo

The substitution x > x + y/2, y >y + Y3/2 translates the origin
of the coordinate system to the triangular equilibrium position La.
There we expand the Lagrangian function in power series of x and vy,

and we find (Deprit 1966) :

JE==.£é +u‘3 +"Z’
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1.2 I2 L] 3 3 9
£2=3(x +y)+(xy-xy)+§x +zy/§xy+§y 5

ib..3 3 2. 33 2 3 3
£ S TRLE R AT MR TR A

3716 Y%
£ -3 4 _ 2 g3 123 .22 4 & 3,3 8
4 128 32 Y YT 3 XY T3 YIXy T1gYoc

Thus to the first order, the equations of motion are to be derived

from 32. They are

¥ -2y - %'x -‘% y/§§ = 0,

'y+2i-'2-y/§x-%y-0.

To them belongs the characteristic polynomial

4 2 o e 2
s + s +16(1y).

Its roots are distinct and all purely imaginary if and only if
u(l=-y) < 1/27.

In order that this be true, the mass ratio y must be strictly smaller
than Routh's critical mass ratio
i

z %(1 - % /69) = 0.038520896...

"1 9

in which case, the four characteristic roots at the equilibrium L4 are

as follows:




8) " dwps 8y = dwy, sy = ~duy, 8y = -l

where the real numbers and w, are characterized unambiguously

1 2

by the set of relationmns

0 < w, < 1//2 < w <1,

2 2 2
16uulu)2 27(1-y7).

These classical results define the stability and the periods of the
linear oscillations about the equilibrium L4 omitting the nonlinear
terms in the Lagrangian function. What interests us more now is,
however, to investigate the perturbations in the coordinates x,y and
in the basic frequencies arising from the presence of quadratic and
cubic terms on the right-hand members of equations. In order to do so,

let us hereafter put, for the sake of simplicity,

k= @21/t = a-2ubHY2,
g = (oeu)? (1=1,2),
o 1 & (1=1,2)
mi wi ? 9
=9 - 47 (1=1,2)
ni wi ’ .

Then, following Breakwell and Pringle (1966), we introduce the symplectic

matrix

(2)



a=(a,,)

13711, 324

whose elements are defined as follows:

a;, = o, ay = -4w1/k21,

a;, =0, a,, = -4w2/k12,

ajy = 2 /2K, a,, = -3v/3/2kt 0 ,
a1, = -22/2kw2, a,, = 37/572k22w2,
a3 = —mlwl/2kgl, a,, = 3y/§b1/2k21.
ay, = “Myw,/2kL,, 8,9 ™ 3Y/§w2/2k£2,
a3, = 3Y/§72k21wl, a,4 = n1/2k£lwl,
a5, = =3v/3/2k8,0,, a4, = ~ny/2kL,w,.

Accordingly the transformation from the phase space (x,y,px,py) into
the phase space product of the angle-coordinates (¢1,¢2) and of the two

action momenta (11,12), as it 1s defined by the equatioms

x = a) 4P +a),P,

Y = a5Q +ayQ +aygPy +ayPy

+ a,.P. +a

33%1 &

x T 39 t a3 3820

Py = 3,1Q * 8,50 + a,4P) +a,,Py,

wherein



Qi = (ZIi/wi)l/zsin 94> (1=1,2)

P, = (ZIimi)I/ZCOS 64 (i=1,2)

is completely canonical. Moreover, in the new phase variables, the

second order part of the Hamiltonian assumes the normal form

5!2 = wlll - w2I2,

and its general solution is

¢, = w,t + const.,
i (i=1,2)

Ii = const.

If the osciilations about L4 were exactly linear, the integrals of
motion would, in fact, be represented by the above relations and the

corresponding orbits would be given by the formulae

') 2
X = =1 Iilzcos ¢1 St I;/Zcos ¢2
k/2w1 kv’2w2
y = - e 1 /3 Illzcos ¢l + Syvd /5 I%/zcos ¢2
kILl/Zwl kzz/zwz
e phial o ST 1172
kg, 11 Sim e T oG 1 sind,.

1 2



3. SECOND ORDER NORMALIZATION

J. Henrard (1966) has shown how to carry on in a straightforward
manner Birkhoff's normalization without introducing generating functionms

and without inverting power series.

The coordinates (x,y) are to be expanded in double d'Alembert

series:

X = z Brll’o, y = z Bg’l (3)

n>1 n>1

where the homogeneous components X and Yo of degree n are of the

form

(n-m)/2.m/2 N
0:2 Il I, .2: [Cn-m,m,p,qcos(p¢1+q¢2)+sn—m,m,p,qSin(p¢1+q¢2)]' (4)
<m<n (p,q)

In (4) the double summation vrer the indices p and q 1is subject to the
following conventions:

a) p r;ns over those integers in the interval 0 < p < n-m
that have the same parity as n-m;

b) q runs over those integers in the interval -m < q < m
that have the same parity as m.
In the developments (3), the quantities I1 and I2 are to be taken as
constants of integration, while ¢1 and ¢2 are to be determined as linear
functions of the time in such a way that

dpmupt 2 £y (IphLy),
n>1

by = -uy + 2 8y (15,1))
n>1
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where, for any n > 1, f2n and 8,, are homogeneous polynomials of
degree n in the actions I1 and Iz. The canonical character of the
transformation will be ensured formally by requesting that the double

d'Alembert series (3) satisfy the identities

(x;Y) = 0’
(x:x) =1, (y;x) =0,

(x;y) = 0, (y;y) =1, (x,5) =0

where the left-hand members stand for the Poisson bracket with respect

to the phase variables (¢l,¢2,11,12), thus for instance

X 9V ax ady + X 9dvy X Iy

3¢, 31, - 9L, 3¢, 3¢, 31, - 31, 3¢, ’

(x3y) =

and where x,y should be taken as the composition derivatives

. 3X IxX
N A T ol
1 8¢1 2 3¢2

e
|

) )
= ¢, =4 p, =
1 3¢1 2 3¢2
In this way, a Birkhoff normalizing transformation can be

constructed entirely by the method of undetermined coefficients.

As it is shown elsewhere (Deprit et al 1966b), the homogeneous

components of order 2 in the coordinates x and y are solutions

of the partial differential equations



—ll_
S _ 3\ _3]gl0_ 8 _ o B 3 0,1 . x

L i _97,0,1 I 9\ _3 1,0 _
[(“’1 20, U2 B¢, ) 4]32 + [2(“’1 26, 2 a¢2) 4 Y’G]Bz Y.

The right-hand members are the homogeneous components of order 2 obtained

on substituting in the derivatives

o.5.
2 21 2 3 38 2
Tk T TEIW v
oL
3 2 33 9 7
A gy

the first order expressions already obtained for x and y. From

eliminating in turn Bg’l and B;’O from the system (5), we arrive at

the partial differential system

) 9
A -«ﬁ 3¢1 - W, 3¢2 ) + w

9 _ 9 2
by (“’1 20, “2 B0, ) tou,

and the functions on the right-hand members are to be constructed as

follows:

A
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2
- 9 _ 9 -] [ 9 _ 9 3
b = [(“’1 36, | “2 70, ) a]xz 2 2(“’1 T a¢2)+ 2 Y3 | Yy

-
|

2
) 3 3, I 9 A W |
2 [(“’1 36, T Yy a¢2) N 4]Y2 ‘("’1 39, ) a¢2) 4 v/3 X,

It is quite essential to remark that no term in cos ¢1, sin ¢1 or

cos ¢2, sin ¢2 appears in X, and Y2, so that ¢2 and WZ are also

2
1,0 _0,1
free of such terms. Hence the homogeneous components B2 , B2 can be

obtained in a straightforward manner, on applying the differentiation

rules:

8,4, cos(pd; + q¢,) = Ap q cos(pd; + q¢,),

b

88, sinpo; +q¢,) = 8,  sin(pe; + d9,),

’

where

_ 2 _ 2 2 _ _ 2
Ap’q = [wl (Pwl qwz) ][wz (Pwl qwz) ]'

Since we assumed that the irrationality condition (A3) is verified,

one of the divisors A is zero. Notice that, in

b9.0° 21,10 %1,-1° 20,2

view of the inequalities (2), the condition (A)) 1is fulfilled if

3

and only if, in the interval O < p < Hys the mass ratio does not take

the critical wvalue

= 2[1- ;- /18331 = 0.024293897...

Mo 45

e e TR




5 g =

A simple sequence of algebraic manipulations leads eventually

to the components B;’O and Bg’l. It has been checked that they

actually transform the Hamiltonian function 3!3 = —.83 into the

zero function. Both components are listed in Table I.
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Table I

Homogeneous components of order 2 in the coordinates x and y

1’0 0’1
B, B,
2 2
. 3 3-w] L 27-310]422u; B
Y - 3
1 b2, 12 22
1 1
27491 w24 2434452474, +88,°
I.,cos 2¢ 3 LIS L 1 1 L /3
1 1 4 k222 Y 12 2020
1*1 111
i ; 45—44w1w2+18wiw§ . 297-108w1w2-224wiw§
Illzcos(¢l+¢2) -3 Y =% 6)
2 2
k R,llzv'wlwz k Ellzmlwz
45+440. o +18wiwl 29741080, & -224w2 w2
I L 3 172 172 1 12 12 -
IfI%cos(d,-9,)| - Y - = 3
172 12 2 5 6 :
k RlEZlewz k £1£2¢w1w2
2 2 4
3 39, | 27-31wj+22u, =
I - Y e 3
2 b2, 12 2
2 2
27491 we-4u’ 243+450 24740 +880°
3 e 1 2 2 2 /=
I.cos 2¢ = Y = 3
2 2 b 2,2, 12 202,
22 Ol
) 54—53wf+44w? 18+11wi
I.sin 2¢ = 3 3 —y
1 1 3 £2,2 252
1 1
54+9w. w -44w2w2 W, =W 18-11w.w, w,-w
PR 1 12 152 ool 172 1 72
Illzsin(¢l+¢2) 3 > . 31 -3 > . Y
k 2122 lewz k 2122 lewz
54-9w_ w -44w2w2 w, 4w 18+1lw_ w W, 4w
L L 1 12 12,1 2 r7 12 12
I I sin(¢;-¢))| 3 2 . 33— ' i
k 2122 lewz k 2122 lewz
, 54-53w§+44w3 18+11w§
I.si~ 26 2 V3 -3 ——=y
2 2 3 922 252
2 k4,




4. SECOND ORDER COEFFICIENTS IN THE FREQUENCIES

The homogeneous components B;’O and Bg’l of the third order in
the coordinates x and y, as well as the homogeneous polynomials f2
and g, of the second order in the frequencies &l and &2, satisfy the

partial differential equations

B L = 2 _ 371,00 _ o _ . 2 3 0,1
[( 1 3¢, “2 36, ) 4}B3 [2(“’1 3¢, “2 a¢2) 3 Y‘E] By

2 B 08 0,1 > 1,0 , 0,17 _
* 2y 5y [wl e, B 7 By ] 2, [wz T ] P
(6)
2
2 5 \° _97.0,1 3 )y U3 1,0
[( 130, ~ “2 30, ) 4]33 * [2( 190, 2 a¢2) 4 Y'@]B3
T3 0,1 1,07 _ 5 0,1 _ 1,07 _
+ 2f2 3¢1 L wy 3¢1 B + B1 ] 2g2 [ 9 8¢2 B B1 ] = Y3.

The right-hand members are the homogeneous components of order 3

obtained on substituting in the derivatives
2 (g.+£) 2 (e, +£)
90X 3 47 90X 3 4

the expansions obtained for the coordinates x and y up to the second
order so far.

0,1 1,0
3 and B3

As we did at the second order, we eliminate in turn B

from the system (6) so that we obtain the equations
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1,0 _, _
8,8,By 0y - 2£,P - 2g,Q,
0,1 _, _ _
8,8,B3°" = ¥y - 2£,U - 2g,V,

where we put

& 2. _ Sy _ 8 - 9 3
®y [(‘"1 20, “2 %0, a]x3 i [2(“’1 20, 2 a¢2) o *E]Yy

= 2 ., 2, _3 i L 2,y _3
43 [(“’1 2, Y2 3¢, 4} 3 [2(“’1 20, Y273, T4 Y'/3_]"3’

o f224 8, 3 1,0_ 041 3,3 0,1, 11,0
P T [(wl 2 4)((»1 3¢ Bl Bl )+(213¢ +ay/§)(w1 30 Bl +Bl )],
1 21 1 1 1
2
2 [, 235 9, 3 1,0_ 01 . . 3 .3 0.1, 1,0
Q=5 [0 25 - D, o1 - N + 2wy 7+ 2, e N ).
2 23 2 2
2 .28 3, _3 .01,.:1,0 _ 3 3 1,0 .0,1
ST [(“’132 W0y ge B BT T Qe gyT -3y 30, 01 " By )]’
o2 1 1
2
3. .28 A 0,1, 1,0, (L, B _ 3 1,0 _ 0,1
(TS [(“’232 AN Sr vy a¢ B)" +B7) - (20, 35 71/ 3. &1 B )]'
4 2 1
1,0 o, 1
We do not need to evaluate the components B3 and B3 For

it will be sufficient for our purpose to compute the coefficients of
cos ¢l, sin ¢l, cos ¢2 and sin ¢2 in the right-hand members of the
partial equations. Those are the critical terms, because they belong
to the kernels of the differential operator AlAz. Now they can be

eliminated by a proper choice of the coefficients in the polynomials

£y = £5 001 * fo,212e

8y = 8y ol1 * 8 ol




=i 7=

As a matter of fact, it turns out that the system of 16 linear equations

in the four unknowns fZ,O’ f0,2’ gZ,O’ 80,2 to which we arrived is

consistent and yields a unique solution. We have listed it in Table IiI.

Table II
Component of fourth order in the normalized Hamiltonian
w2 (81-69602+1244)
¢ = =_J; 2 1 1
2,0 72 9 2 2 ’
(1-2w1) (1-5wl)
2 2
. g . 1 wlw2(43+64wlw2)
0,2 52,0 " "6 Zs 7o 2 AED SO
(1-2w1)(l 2w2)(1 Swl)(l Swz)
. wi(81-696w§+124w3)
89,2 = ¢ *72 oo -
(l—2w2) (l-5w2)

These results have been checked. For the system Sun-Jupiter
(u = 0.000953875...), the Birkhoff's normalization has been carried
numerically up to order thirteen (Deprit et al 1966b); there it was

found that

A = 0.01135436,
B = -0.1551412,
C =1.119733.

The same task has been performed (Deprit et al 1966a) for the system

Earth-Moon (p = 0.0121500...) where it was found that
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>
L}

0.2313561,

-]
[}

-1.712630,

= 0.677171%,

(@]
[

Both systems of values have been recovered from the definitions in

Table II valid for any permissible mass ratios.

Another check is provided by the analytical expansions of the
two natural families of periodic orbits issued from LA’ as they were
performed by Pedersen (1935). There the author finds that the frequency

along the family of short period orbits 1is a series

wy (& Be fore

-
]

in a certain orbital parameter €. For the coefficient E, he gives

the expression

+2908w

243-2007wi-648w -496w§

N = &
= N—= o

2304wl(l-2w ) (1-5w])

1

If our computation is correct, our coefficient A should be traced in

Pedersen's coefficient E. But this is the case, since

2 4 6 8 _ 2 2 _ 2 4, .
243 - 2007wl - 648w1 + 2908wl - 496w1 = w2(3+4w1)(81 696w1+124wl),
hence
3+4w§
2 32w A.
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Birkhoff's normalization cannot be carried at order three unless

the irrationality condition (A is assumed. But (Aa) means that,

4)

from the interval O <y < of permissible mass ratios, besides Hos

1

the value

=2 (-7 J/II7) = 0.013516016. ..

H3 45

should be excluded.

Thus A, B, C are functions of the mass ratio on the interval
0 <y < ul out of which the critical values My and My have been
taken. The main qualitative characteristics of these functions can be
read from Figure 1 in which we have plotted respectively A, B, C

versus the mass ratio.

5. STABILITY

Knowing the fourth order part

1. e 2
.9[4 = 2(AIl + 2B1112 + CIZ)

of the normalized Hamiltonian, we compute the determinant D which
decides about the stability at the equilibrium in the theorems of Arnol“d

and Moser. Thus we find that

2 2
D= -(Aw2 + 2Bw1w2 + Cwl),
a quantity which can easily be expressed as a rational function of the

2 2

product Wy, :




—9iQ—

36-541w
2
1

im§+644w w

D=-2¢

4 4
172
2 2
(1-4w 1%2

wg)(4-25w wd)

It is easy to see that, in the interval 0 < y < ul, it possesses one,

and only one, zero for the mass ratio
Mo = 0.01091367...

Thus, stability of the equilibrium at L4 cannot be decided for this

mass ratio from applying Moser's theorem.

The qualitative features of the determinant -D as a function of

the mass ratio u are summarized in the Figure 2.
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Fig. 2. Stability condition from the normalized
Hamiltonian at order 4.
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6. CONCLUSIONS

In the planar Restricted Problem of Three Bodies, the question
of stability of the equilateral positions of equilibrium can be answered
in the affirmative for all values of the mass ratio u in the open
interval O < p < My except at the critical mass ratios My = 0.024293...
and Wy = 0.013516... and at a third point He = 0.010913... . At these

three points, Moser's theorem does not apply.
PPLY
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